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Asymptotic phase diagrams for lattice spin systems 
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Blacksburg, Virginia 24061, USA 

Received 1 July 1985, in final form 16 January 1986 

Abstract. We present a method of constructing the phase diagram at low temperatures 
using the low temperature expansions. We consider spin lattice systems described by a 
Hamiltonian with a d-dimensional perturbation space. We prove that there is a one-to-one 
correspondence between subsets of the phase diagram and extrema1 elements of some 
family of convex sets. We also solve a linear programming problem of the phase diagram 
for a set of affine functionals. 

1. Introduction 

Low temperature (LT) expansions are often used as a first step in investigating the low 
temperature properties of a system. We will restrict our attention to lattice spin systems. 
Let us consider the following situation. A system is described by a finite range 
Hamiltonian Ho with a finite number of periodic ground states. We assume that for 
any periodic ground state G, the LT expansion of a pressure is known. Next, the 
system is perturbed by a Hamiltonian in the form Zf=, L,, where L = ( L l , .  . . , L d )  is 
an element of a d-dimensional perturbation space. It is our goal to describe the phase 
diagram resulting from the LT expansion of the pressure. 

If the number of ground states and dimension of the space is large, the situation 
is complicated, with one exception: when the number of ground states exceeds the 
dimension of the perturbation space by one. In this case there exist both a rigorous 
Pirogov-Sinai theory [1,2] and the detailed description of the phase diagram obtained 
from the LT expansions [3]. In [3] Slawny has also shown that this phase diagram is 
asymptotic (as temperature goes to zero) to the rigorous one. The phase diagram 
obtained from LT expansions will henceforth be called the asymptotic phase diagram. 
It is easy to see that as long as the number of periodic ground states of Ho exceeds 
the dimension of a perturbation space (and the Hamiltonian H,, satisfies some technical 
conditions necessary for the existence of the LT expansions, cf [3]), this phase diagram 
is asymptotic to the rigorous one. One can add new perturbations to increase the 
dimension of a perturbation space, so that the system satisfies the conditions of 
Pirogov-Sinai theory. 

In this paper we present a method of constructing the asymptotic phase diagrams 
for a wide class of systems in the general case when the number of ground states is 
larger than the dimension of a perturbation space. The general idea is to locally 
approximate LT expansions by affine functionals. The phase diagram for a set r of 
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affine functionals can be obtained from the properties of a convex hull of r. The 
asymptotic phase diagram is then approximated in some sense by the phase diagram 
for r. 

This paper is laid out as follows, First we describe the framework and state the 
problem. In 5 3 we consider the simpler version of the problem: the phase diagram 
for a set of affine functionals. Section 4 contains the main result and the description 
of the phase diagram in the general case. In 0 5 we present examples. The proofs of 
theorems are contained in the appendix. 

2. Framework 

2.1. The description of a system 

Let IL be a Z"-invariant lattice, and ,y = SL the configuration space ( S  is finite). The 
system is described by a finite range Hamiltonian Ho, defined by an interaction @. 
If A c  U is finite, then 

If configurations X, Y differ in a finite number of points only, we define a 
relative Hamiltonian 

Ho(xIY)=c@M(X)-@. , (y)  

(with the sum over finite subsets M of [I). 
We say that the configuration G is periodic if there exists a subgroup G of Z" such 

that G is invariant with respect to the translations from 6. A periodic configuration 
G is a periodic ground state if, for any X differing from G in a finite number of points, 
Ho(XIG) 3 0. X is called an excitation of G, and we define: supp X = {a E [I: X, # Go}. 
The set of ground states is denoted by 9. We assume that the set 
d H o )  = {Ho(X(G), G E %} is ordered increasingly and its elements are 0 < E ,  < 
E2 < . . . . It is not hard to see that U( Ho) is additive. 

The equivalent definition of a periodic ground state is [ l ]  that 

1 
e,(H)=lim -HH,(G)=infe,(H) 

..\+m IAI 

with the infimum taken over the set of periodic configurations. We make the following 
assumptions about the Hamiltonian Ho: 

(i) Y is finite and 
(ii) for any G E 3, Ho(X/G)  + CO if Card(supp X )  + CO. 

Next, we consider the set of Hamiltonians of the form 
d 

H ( L )  = Ho+ 1 Ll L = ( L I , ,  . , , L d )  
i = l  

where L is an element of a d-dimensional perturbation space 3. The norm on 3 is 
any norm induced by the I' norm in Kid:  llxll =Zy=, Ixil. 

Let GE %. The function L +  eG(L)  (cf (2.1)) defines an element of 2'* (the space 
dual to 2'). We assume that 3 is transversal to %: for any fixed Go E 9, { eG - eG,: G E %) 
spans 3*. 
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2.2. LT expansions and cut-of pressures 

As is well known, the LT expansions for general systems have to be treated as formal 
series in {exp x(-PE,)}. The discussion of this paragraph follows [3]. We will denote 
an algebra of formal series by D, and D" is a direct sum of n copies of D. Elements 
of D (of D") are marked by a dot. 

For any G E %, L E  2' and P > 0, the low temperature expansion of a pressure is a 
formal series given by 

cc 

dG(PL) = c n,?(PL) exp(-PE,). (2.2) 
J = l  

The dependence of n ?  on its argument is as follows: 

where p y k  is a linear form, and some nfk can be equal to zero. 

replacing x by 1: 
If x E Dd, we define a formal series n,?(x) by expanding n,?(x) around zero, and 

r " 1  
nj"(x)= c n,f;k y [ -&?k(x) ]s ,  

k = l  s = O s .  

Then 

Here 

To describe the phase diagram, one introduces the cut-off pressures. Let m E N. 
Then the cut-off pressure in order m is 

p z  is defined for all values of PL. However, we want to be able to vary L and P 
independently, and eventually allow P to go to infinity with L fixed. Combining (2.3) 
and (2.4) we obtain an equivalent expression for p: as a function of L and P :  

m 7 
P ) =  c n:k exp{-PIE,+pFk(L)l} 

1 = 1  k = l  

Hence the limit /3 +CO has meaning only if E,+jhFk(L)>O. It is easy to see that there 
exists c, > 0 such that if llLll< c, then 

Et -k ?k(L) > 0 

for all G, i S m and k We will denote by 0 the ball B(0,  c,) c 2. 
For any G E ~ ,  L E O ,  and P > O  we define 

T:(PL, p )  = - ( p L ,  eG)+pE(PL, p )  (2.5) 

with eG being an element of 2* introduced by (2.1), and p: being defined by (2.4). 



3110 M Tarnawski 

2.3. The phase diagram in order m 

Suppose that %'c 3. We define a subset of 2 x [0, a): 

Rm,,(%')={LEb, p > o :  T : (pL ,p )  

= .rrE'(pL, p )  > .rr:"(pL, p )  for all G, G 'E  %', G"$ %'} (2.6) 

The phase diagram in order m is a set: 

(2.7) 

Cl,(%') is called a stratum of R, corresponding to %'. 
Let G E  3. The domain of G is the set 

G )  = {LE 6: .rrE(L, p )  2 .rr:'(L, p )  all G ' E  %} (2.8) 

Note that in contrast to strata, domains are closed sets. 
Our goal is to describe the properties of R, which are common for all m large 

enough. Therefore not all properties of an individual R, are important. We are 
interested in stable properties: if R, has the given property, then every R, for s 2 tn 
also has this property. Thus, with respect to strata, we are interested in their existence 
rather than in the precise description of their form. We want also to have some 
approximation on the localisation of a stratum in the perturbation space and with 
respect to other strata. Finally, we will determine the conclusive order: above this 
order, all phase diagrams are isomorphic to one another in the sense that there is a 
one-to-one correspondence between their strata. 

The natural set of variables for the problem is ( p L ,  p )  rather than (L, p )  (cf (2.4) 
and (2.5)).  We will denote the layers of R, for p fixed by and layers of a stratum 
a,( 3') by Om,,( %'). The variable p L  will be denoted by x. 

The problem of existence of a given stratum a,(%') is twofold. The definition 
(2.6) consists of the system of equations and a system of inequalities. Hence we have 
to determine (i) for which 3' the system of equations has a solution and (ii) when 
the system of inequalities 'cuts out' the non-empty piece from the solution set. Let us 
consider the first problem. 

Definition 1.  A family of points xl, x2, .  . . , x, in a linear vector space is said to be 
linearly independent if for any choice of i, (1 s i s  s), the set of vectors { x k  - x i ,  k # i }  
is linearly independent. 

Theorem 1 .  Suppose that %o= {Go, G I , .  . . , G,}c % is such that {eG,,  i = 1 , .  . . , s} is 
linearly independent in 2*. Let N =U:=, ker(e,, - eGJ and 3 = N O M .  Consider a 
system of equations: 

T : ' ( x ,  p )  - 7T?(X, p )  = 0. 

Then there exists pm(  %o) such that 
(i) Vp > Pm( Fl0), the solution y : PO n N x (pm(  go), m)+M exists and is analytic 

in the first coordinate and 
(ii) V Z E  p O n  N 

W 

Y ( Z ,  P )  = C y j ( z )  exp(-PEj)* 
j = 1  

The proof of theorem 1 may be found in appendix 1. 

(2.10) 
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(Note that conditions imposed on Yo may be relaxed in the presence of symmetries 

In general, if go does not satisfy the conditions of the above theorem, the solution 
does not exist. In order to avoid this problem, we will 

The solution of the second problem of the existence of a,,,(%’), connected with 

(cf P 4.31.) 

of (2.9), and hence 
be forced to adopt an additional assumption (cf assumption 1 ) .  

the system of inequalities, is presented in the following sections. 

Example. Blume-Capel model ( [ 4 , 5 ] ) .  We will use the following example to illustrate 
our method. 

Let 

where (a ,  b )  denotes a pair of nearest neighbours. 
The set of ground states of Ho is 

% =  { ( - 5 ) ,  (-31, ( - I ) ,  ( I ) ,  (31, ( 5 ) )  

with ( k )  denoting the configuration: V u  E Z2, ( k ) ,  = k / 2 .  The LT expansion coefficients 
in the first few orders are 

( U )  E l = 4  

( b )  E2=6 

n‘,5)(0)  = nj-5)(0) = 1 

n:5)(o) = n:-5) (0)  = 2 

n‘,k’(0) = 2 if k # - 5 , 5  

nik’(0) = 4 if k # - 5 3  

( c )  v i < 7  nlk’ (O)  = nj”(0) k =  -3,3, -1 .  

The order seven is the lowest order in which there exists for any ( k )  an excitation 
X such that for some a E Z2, IXa - kl > 1 .  In this order 

n$-I)(o) = n$”(O) 

n y ( ~ )  - 4 3 y o )  = 4 3 )  > 0. 

nY’(0) = 4 - 3 1  (0) 

We will consider the perturbation space generated by Hamiltonians: 

L2= c si. 
a E L  

C sa 
a E L  

In the base generated in Y’* by L,, L2, the linear functional for ( k )  is 

e(k) = i ( 4 k ,  k 3 ) .  

3. The phase diagrams for a set of affine functionals 

As the first case in the investigation of phase diagrams for various systems, let us 
consider the phase diagram for a set of affine functionals. This is also a new type of 
problem in linear programming. 

Suppose that r = {p i ,  i = 1,2, . . . , N }  is a set of affine functionals: 

p i : R d + R :  p , ( x )=(x ,  hi)+ai ai E R ( d +  1 s N ) .  
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Assume that { h i :  pi E r} spans Rd. We will also write 
pi = (h i ,  a i )  E R~+’. 

n(r’)={x: p , ( x ) = p j ( x ) > p k ( x )  i fp i ,p jEr‘ ,pkgr’}  ( 3 . 1 ~ ~ )  

I I ( p i )  = {x: p i ( x )  3 p j ( x )  a l l j  f i }  (3.lb) 

(Different notation is used for the phase diagram in this case since later on we will 
introduce simultaneously phase diagrams for cut-off pressures and for some set of 
affine functionals.) 

The set II = U II(r’), where the union is over all T ’ c  r such that Ir’( a 2, will be 
called the phase diagram for r, and its subsets II(r’) the strata. 

Let 

If r’ c r, we define 

(closed). 

w = conv r c R~+’. (3.2) 
We define max W as the set of maxima of W. We will say that E c max W is a face 
(extremal edge) of max W if E is a face (extremal edge) of W. E(max W) denotes a 
set of extremal points of max W. 

Theorem 2. 
(1) There exists a one-to-one correspondence between extremal elements of max W 

and strata of II. Namely, let E = max W be a face (extremal edge) of dimension d - r. 
Then 11( E )  # 0, dim II( E)  = r and 

I I ( E )  = X: p ( x )  = p ’ ( x ) >  p ’ (x )  

In particular, if p E E(max W )  then Int n ( p )  # 0. 

VP, P ‘ E  E, P ’ E  U E(F)\E} (3.3) I F x E  

S 

(2) If p =  &pi ( 2 s  S G  d + 1) with pi E E(max W) A,  E ((41) 
i = l  

S 

and Ai = 1 then II({pl, .  . . , p s } ) .  
i = l  

(3) p max W*II(p) = 0. 
The proof of theorem 2 is located in appendix 2. 

The phase diagram II for r is now constructed as follows: to any ddimensional 
face F of max W there corresponds a point v (  F )  which is the unique element of 11( F ) .  
Furthermore, for any face E of F (of dimension d - 1) there exists a one-dimensional 
line on which elements belonging to E coexist. This line either goes to infinity (if 
some elements of E (  E )  are such that their linear parts belong to conv{h, p E r}), or it 
terminates at another point of coexistence v ( F ’ ) ,  for some face F’ sharing E with F. 
The process then continues for faces of II with lower dimensions. 

Remark 1 .  If r is a set of affine functionals { ( e a  0 ) ,  G E %(E&,)}, then the application 
of theorem 2 results in a zero temperature phase diagram. 

Example. Let us apply theorem 2 to the set { ( e ( k ) ,  0), ( k )  E %}. The set W is presented 
in figure l ( a ) .  In this case, max W = W has four extremal points, four edges and one 
face. Hence the zero-order (zero temperature) phase diagram, figure 2(a),  has one 
point where all six functionals coexist and four lines of two-functional coexistence. 
Domains of (-1) and (1) are restricted to the point. 
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( a )  ( b )  

Figure 1. The projection on 3* of max W for (a )  r = { ( - e ( k l , O ) ,  ( k ) E  %}; 
( b )  r={(-e, n i k ) ( o ) ) ,  ( k ) ~  %}. 

[ a )  

l b i  

Figure 2. The phase diagram for sets of affine functionals: (a )  r = { ( - e ( k ) ,  0), ( k )  E %}; 
( b )  r={(-e,  n l k ) ( O ) ) ,  ( k ) ~  %}. 

Next, let us consider the set { ( e ( k ) ,  n ik ) (0 ) ) ,  ( k ) ~  Y}. max W, has five faces, as in 
figure l (b) .  They are listed below, every face P together with elements of gl(P), and 
v l ( p ) :  

F :  (-11, (11, (-3L (3) 

G: ( 5 ) ,  (31, (-1) 

H :  (9, ( - I ) ,  (-3) 

G’: (-51, (-31, (1) 

H ’ :  (-51, ( I ) ,  (3) 

v , ( F ) = O  

v,(G) = ( d ,  -&I 
v , ( H )  = (E, -t) 
v,(G’) = (4, 3 
v , ( H ’ )  = (-E, t,. 
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The phase diagram for this case is shown in figure 2 ( b ) .  It is easy to see the 
correspondence between extrema1 elements of max W and strata of the phase diagram. 

4. The phase diagram in order m 

We will now consider the general situation. We will show that the properties of the 
phase diagram can be described with the help of some family of convex sets (a 
convex structure) i n  2'* x W. This family is a generalisation of the set max W defined 
in P 3 (cf (3.1)). 

4.1. The convex structure in order m 

Recall that D denotes an algebra of formal series, and elements of D (of D") are marked 
by a dot. 

For any GE %, let A? =pG(0), = n p ( 0 ) .  Define 

W ,  c 2' x R: W, = conv( - e ,  A?), G E 3. 
In W, we consider the set of maxima of W , :  max W,.  The set E c max W, is an 
s-dimensional face (edge)  of max W, if it is an s-dimensional face (edge) of W,.  

Let IF, denote the set of all faces of max W,. If FEIF,, we define 

3 , ( F ) = { G :  ( - e ,  n F ( 0 ) ) E F ) .  

There exists a unique vector u , ( F )  in 2 such that VG, Go€ % , ( F ) :  
-( v ,  ( F ) ,  eG - eGo) + A? - A? = 0. 

If Go, GI , .  . , , Gd are any phases corresponding to elements of & ( F ) ,  then v , ( F )  is 
defined as the solution of the system of equations 

-( U, ( F ) ,  eG, - e,) + 

6 ( F ,  P )  = exp(-PE,)u,(F) 

- A? = 0. (4.1) 
For any F E  IF ,, we define the following quantities: 

U,  ED^: (U,), = n, ( V l ) k  = 0 if k 3 2 .  
Let A ? ( F )  = d G ( t j l ( F ) ) 2  (for the definition of pG(x) see § 2.2) and 

W,( F )  = cow{( -e, A?( F ) )  

F 2 =  U IF2(F) 

G E %(F)l. 
We denote the set of faces of max W2( F )  by IF2( F ) .  The set 

F E F ,  

is called the convex structure in order 2. 
The convex structure in order m is defined by induction. 
If F'EIF,-~ is given, then for any FEIF,-,(F') one defines u, - , (F)  by means of 

formula (4.1), and 

f i m - I ( F ,  P I =  G m - 2 ( F ' >  P)+exp(-PE,-,)v,-l(F) 
d m -  1 ( F )  E Dd : (U,- 1 ( F ) )  k = (dm -2( F ' ) )  k 

g m - , ( F ) = ( G ~  %m-2(F') :  ( - e ,  A ~ - , ( F ' ) ) E  F } .  

i f k # m - 1  
( d m  - 1 ( F )  1 m - 1 = v m  - 1 ( F )  
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Let A z ( F ) = I j G (  um-l(F))m. We define W,(F),  max W,(F)  and IF,(F) as in order 
2. The convex structure in order m is the set 

E m =  U I F m ( F ) .  
FsF,_, 

Finally, Fo = WO = conv{ -eG G E %}. 
Here we make the following remarks. 
(i) For any F in IF,, there exists a unique set of faces {Fo, F1, .  . . , F,} such that 

F, EIF,(F,-~),  and F, = F. 
(ii) For any face F E f f k ,  we can replace A F + l ( F )  by AF+,(F)--Af+l(F) for any 

G E %k( F ) .  The convex properties ofmax wk+,( F )  are not changed by this replacement. 
(iii) Suppose that I%(F)I = d + 1 for some FE IF,. Then IFm+l(F) = {F,+,}, . . . , 

F,+,(Fm+,-,) = {Fm+s} for all s, and F, F,+, , . . . , F,,, are isomorphic (as convex sets 
in 2’* x R, i.e. that there is a one-to-one correspondence between extrema1 elements 
of both sets). 

Definition 2. The order m is conclusive if V F  E IF ,, I%,( F)I = d + 1 .  

Example. In 03, we have already discussed the convex structures in zero and first 
orders. In order 2 ( E2 = 6 ) ,  one has 

p‘k’(u1(P))2 = p‘k ’ (o)2  
for any face P. Hence 

Aik’( P )  = n:k’(O) = 4 k # - 5 , 5  

2 k = - 5 , 5 .  

Thus max W , ( P )  has mly one element which is isomorphic (as a convex set) to P. 
We will denote it also as P. Moreover, it is easy to see that u2( P )  = 2u1( P ) .  Obviously 
IF2 is isomorphic to ff (as collections of convex sets, see (iii) above). 

Let P be any element of IF2. In order 3 ( E3 = 8) (see definition, 0 2.2) 

P‘k’(U2(P))3 =p‘”(Vl(P))3 = n $ k ’ ( 0 ) + ( u l ( P ) ,  dnik’ dx(0)). 

Since the exact form of these expressions is cumbersome and of little importance, we 
will not reproduce it here. We note that W 3 ( P )  is again isomorphic to W , ( P ) .  If P 
is not F, then this holds because Y3( P )  has three elements, and for F one has u2( F )  = C, 
so W 3 ( F )  is a translate of W 2 ( F ) .  Since in any order s, higher than 2, IF,(P) is 
isomorphic to FJP) ( P  not equal to F ) ,  we will not investigate F,(P). 

Let us study W , ( F )  for i > 3.  As we have already observed 

0 ‘ ~ ’ ( u 2 ) 3  = nik’ (0)  =constant if k = -3, -1 ,  1,3. 

Hence u3(F)  = 0. By the inductive argument, u , ( F )  = 0 if i < 7 .  In order 7 

n$”(O) - ni3’ (0)  = a ( 3 )  > 0. 

max W A F )  has two faces (figure 3) .  These are listed below together with corresponding 
vectors in 2’: 

F1: WF1) = {(3) ,  ( I ) ,  ( -1))  
F2: %77(F*) ={( -3 ) ,  (-11, (1 ) )  

u7(F1) = ( h a ( 3 ) ,  - 3 a ( 3 ) )  
u 7 ( F 2 )  = ( -&a(3) ,  fa(3)). 

One does not have to investigate convex structures in higher orders ( ~ 2 7 )  since 
IF, is isomorphic to IF7 (in the sense of (iii) above), 



3116 M Tarnawski 

g* t 
I 
I 1-31 

I 
I 
I 

Figure 3. The projection of max W , ( F )  on 27* 

Definition 3. Let FE  E,, and {Fo, Fl, . . . , F }  be as in (i) above. For any G in 9, 
we define an  affine functional: 

P Z . p ( F )  : =Y-+ 

(4.2) 

Remark 2. V G  E Ylm( F ) ,  V j  < m, 

AF(F,-l)  -(q(6), eG) = A,GO(F,-,)-(u,(F,), eGo) 

with Go€ 9,,,(F) being any fixed element. 

4.2. The phase diagram in order m 

Now we will show how the convex structure describes the phase diagram in order m. 
Let us introduce the following notation: if Fk E I F k ,  then II(F,) is a phase diagram for 
the set of affine functionals: 

Let us first describe the restrictions ofthe method. Suppose that E is an  n-dimensional 
face of max Wk+l(Fk).  Then II(Fk, ? & + , ( E ) )  exists. However, if %k+l(E) does not 
satisfy conditions imposed by theorem 1, then the solution for the system of equations 
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(2.9), and hence fl,,,,p(%k+l(E)), does not generally exist. Therefore we have to make 
an  additional assumption about the convex structure. 

Assumption 1. Let ks m. If E is a face (extremal edge) of max Wk(F)(FE[Fk-l) 

(Assumption 1 can be relaxed in the presence of symmetries, cf 4.3.) 
with dim E < d, E contains only dim E + 1 functionals p&(F) .  

The following theorem is the main result of this paper. 

Theorem 3. Let order m be conclusive, and  suppose that the system satisfies assumption 
1 for all orders up  to the order m. The 3Pm : VP > P, the following holds. 

(1) Suppose that F E [ F k ( k <  m ) .  Then 3 open sets uk (F) ,  U I ( F ) : V P > P , , , ,  the 
following statements hold in Z =  U ; ( F ) \ u  u k + l ( F ’ )  (with the union over faces in 

( a )  There is a one-to-one correspondence between strata of n( F )  n Z and strata 
of 3”). This correspondence preserves the closure, i.e. the 
elements of the closure of n(Fk, %) correspond to the elements of the closure of 

F k + l ( F ) ) .  

n Z : n( F, %o) + 

m.P ( %cl 1 * 
( b )  3 a ( F ) > 0 :  dis t ( I I (%o)nZ,  fl,,,,o(%o)n Z ) <  a ( F )  exp(-PEk+,). 
(2) If E c max W,,,(F’) (FE F,_,) is a face (edge, extremal point) of dimension 

d - r, then G) # 0 if and 
only if ~ ( 3 m , ~ (  F’)  E E(max W,( F ‘ ) ) .  Moreover, Vs 2 m 3PS : VP > PI, the above holds 
for corresponding strata of 

g e , ( E ) )  # 0 and has dimension r. In particular, 

The proof of theorem 3 is contained in appendix 3. 

Remark 3. The phase diagram a,, s < m, can be obtained from a,,, ( m  conclusive) 
c U , ( F ) ,  then we identify 

(after 
in the following way. Let FEIF,. If 3’ is such that 
Os,p(%’)  with C,(F) .  There is an  obvious correspondence between strata of 
the identification) and extremal elements of the convex structure in order s. 

Let us now show how the theorem is used to describe the phase diagram. For every 
FE F,, there exists a unique point U( F )  of coexistence of phases from %,,,( F ) .  Next, 
for any ( d  - 1)-dimensional face E, of F, there is a one-dimensional surface of 
coexistence of phases in %,,,(El) which either terminates at the boundary of Po (if  
some phases in %,,,(E) correspond to elements of E(conv{-eG GE %})), or ter- 
minates at another point of coexistence u ( F ’ )  (with F’= E , ) .  Furthermore, for any 
( d  - 2)-dimensional edge E2, there exists a two-dimensional surface of coexistence of 
phases from % , ( E 2 ) .  This surface is bounded by the set of lines which are the surfaces 
of coexistence of phases from %,, , (E‘)  for any E ’ =  E2.  In  addition, if some element 
of %,,,(E2) corresponds to the element of E(conv{-eG, GE %}), then one of the bound- 
aries is the boundary of Po. One can make similar statements about strata of higher 
dimensions. 

The most convenient way of representing the phase diagram is to show it separately 
in the blow-ups of sets u k ( F ) ,  FE [Fk. In each of these sets we can apply part (2)  of 
the theorem to obtain the topology and localisation of strata. 

Example 4. The phase diagram for our example is shown in figures 4, 5 and 6. Since 
is constructed order by order, we represent it in the successive blow-ups of sets 

u k  ( F k  1. 
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Figure 4. The phase diagram fLmp in PO\ U,(  F , ) .  Dotted regions represent the restrictions 
imposed by theorem 3,  part ( I b ) .  

As has been discussed before ( §  3), WO has four extremal points: (-5), (S) ,  (-3), 
(3) and fouredges: {(-5), (-311, {(--SI, (311, ((51, (-3)}, ((51, (311 (figure l ( a ) ) .  Hence, 
on PO\ Uo(Fo),  has four lines of two-phase coexistence: i 2 m , D ( ( - 5 ) ,  (-3)), 

shown in figure 5.  It is easy to see the correspondence between strata of a,,,, strata 
of I I (Fo)  (figure 2 ( b ) )  and extremal features of max W, (cf figure l (b ) ) .  Finally, the 
blow-up of U,( F )  is shown in figure 6. Since IF I is isomorphic to IF, if i 2 7, the phase 
diagram of figures 4, 5 and 6 is representative for all orders higher than seven. 

a m , p ( ( 5 ) 9  (-3))9 O m . p ( ( 5 ) 3  (3)) and flm,p((5), (3)) (figure 4). Next, 0 m . p  n UO(F0) is 

4.3. Phase diagrams in the presence of symmetries 

Assumption 1 can be relaxed in the presence of symmetries of an original Hamiltonian 
HO. 

Let R be the transformation group acting on the lattice and Q be the group of 
transformation acting on ,y pointwise: if Qo is a group of transformations of S, then 
Q = Q:. 

The subgroup 0 c  R'* Q is a symmetry group of the Hamiltonian Ho if V B E  0, 
V Y ,  X differing in a finite number of points: 

H o ( e x l e y )  = H, , (X~  Y ) .  
0 induces the group of transformations T acting on 2: if B E 0 and L E  2, then 
T,L(X/  Y )  = L ( e x i e u ) .  

It i seasy  to see that V G  E Y, V m  EN, 
a c  

r m  ( A  P ) =  ~ $ ( T @ x ,  P I .  
It follows that flm,p is invariant with respect to T. 

VB E O( F ) ,  Tg F = F. Define 
Suppose now that F E  F,,,(Fm-,) and let 0 ( F )  be a symmetry group of %,,,(F). Then 

T ( F )  = { L :  ve E O ( F )  T,L = L )  2 = 2( F )  0 2'( F ) .  
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Figure 5. The phase diagram 
restrictions imposed by theorem 3, part (1 b ) .  

in the set Cl;( Fo)\U,(F). Dotted regions represent the 

Suppose now that %,,,(F) has p = dim 2 ( F )  + 1 orbits with respect to O ( F ) .  Let 
Gi, i = 0,. . . , p be representatives of the orbits. 

Claim. 3 p ( F ) :  Vp > P ( F ) ,  Qm,D(%m(F) )  exists and is contained in T ( F ) .  

Pro05 First note that Y (  F )  = nG,# ker( eG - eeG) .  Consider the system of equations 

r 2 ( x ,  P )  - 7r2'(X9 P )  = 0 G, G'E %,,,(F). 

This system can be separated into two sets of equations: 

(x, eG - e G , )  i = O , .  . . , p G in ith orbit (4.3) 

7rZc(x, p )  - 7r>(x, p )  = 0 i = 1, . . . , p .  

The solution set of the first system of equations is 2 ( F ) ,  hence one can choose 
d = dim 2 ( F )  linearly independent equations of type (4.3). The second set is linearly 
independent. Hence by the dimension argument one can apply the implicit function 
theorem. 
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Figure 6. The phase diagram inside the set U;. Dotted regions represent the 
restrictions imposed by theorem 3, part ( 1  b ) .  

Note that F,+l(F) = {F,+l}, and F,,, is isomorphic to F, so the proposition holds 
by induction for all s L m. Hence we can generalise assumption 1 to the following. 

Assumption 2. Let k c  m and FE  Fk. If E is an r-dimensional face (extrema1 edge) 
of F, @ ( E )  c @ ( F )  is the symmetry group for E and S(E) a subspace invariant with 
respect to @ ( E ) ,  then %,,,(E) has only s = r + 1 -dim 2( E )  orbits. 

If assumption 2 is satisfied, theorem 3 also holds. An example of a system with 
additional symmetry is given in 0 5.1. 

5. Examples 

5.1. The Blume- Capel model with additional symmetry 

This example shows how the phase diagram is constructed when there is an additional 
symmetry of the Hamiltonian HO. 

The Hamiltonian HO is the same as in the example of P 2: S = {-2, - 1 , O ,  1,2}. 2 
is generated by Hamiltonians: 

Lz= c s:. 
a s 1  

L , =  c s a  
aeL 

In the base induced in 2 by L1,  L2, one has e(k) = (k, k2). 
It is easy to see that Vk, E (  WO); max W, has two faces (figure 7 ( a ) ) :  

H containing points corresponding to (2), (-2), (l) ,  (-1) Ul(H) = (0, -4) 
F:(1), (-11, ( 0 )  u , ( F )  = 0. 
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g* t 
I 

I 1 2 )  

Figure 7. The phase diagram construction for the Blume-Cape1 model with the perturbation 
space generated by s, and si. ( a )  The projection of max W, on 2*. (b)  The phase diagram 

for rn> i ( 1 ) .  

The symmetry group for %,( H) is { e , f ) ,  where e is an identity transformation, and 
fsa = -sa. This group has two orbits: { ( - 2 ) ,  ( 2 ) )  and { ( - l ) ,  ( 1 ) ) .  Hence one can apply 
theorem 3 .  Obviously order 1 is conclusive as to the existence of the strata. Let order 
i ( 1 )  be the lowest order for which n$!,(O) # n$'i,(O). If order i ( 1 )  is examined, one 
can see that q,,,(F) = (0, - 1 ) .  

The phase diagram fls,s for s L i (  1 )  is presented in figure 7(6) .  

5.2. The antiferromagnet with stabilisation on the FCC lattice 

As the next example let us consider the antiferromagnet on the FCC lattice in R3. L 
contains four sublattices: Z3, ; ( e ,  + e2)  +-E3, f( e ,  + e3)  + -E3, i( e2 + e3)  +Z3. The configur- 
ation set S is { - 1 , l ) .  The Hamiltonian Ho is given by (cf figure 8 ( a ) )  

H O =  c sosb 
(a ,b)  

where (a ,  b )  denotes a pair of nearest neighbours (figure 8 ( a ) ) .  

results only, without proofs. 
The reader will find an extensive description of this model in [3]. Here we cite 

Io1 
p po i r  a poir 

I b )  

Figure 8. ( a )  The bonds for the antiferromagnet on the FCC lattice. An arrow shows the 
nearest-neighbour bond, the broken line, the next-nearest-neighbour bond (perturbation). 
( b )  CI pair and p pair of planes. 
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The ground states of Ho are as follows. There is a class of completely symmetric 
ground states, We choose any two sublattices and assign +1 to every point. To every 
point of the remaining two sublattices we assign - 1 .  This class has six members. Every 
other ground state is obtained from the completely symmetric ones in the following 
way. We choose one of the base vectors, say e,. Starting from any of the completely 
symmetric ground states, we flip spins in arbitrary finite numbers of lattice planes 
perpendicular to the e, axis. Then we repeat this flipping in a periodic fashion. It is 
evident that all ground states differing by the choice of the axis are related by a 
symmetry of the full Hamiltonian Ho. We identify these states with G. Henceforth 
we assume that the axis of changes is the e, axis (x axis). Thus every ground state 
can be viewed as a sequence of antiferromagnetically ordered planes, with no Q priori 
relation between spin orientations in different planes (other than that induced by 
periodicity). 

The system described by the Hamiltonian Ho obviously has an infinite number of 
ground states. In order to obtain the system with finite 3, we introduce a stabilisation: 

where { e , }  is a canonical basis in R3. Then the ground states of H,+H, are those 
elements of 3 which are invariant with respect to translations from m,ZO m,ZO m,Z. 

Let G E  (e (Ho) .  Consider a pair of planes perpendicular to the x axis: {P, gP}, 
where g E P3 is the translation by vector e , .  We say that this pair is a p pair if V a  E P, 
GO = GO+,,. 

If G, = -G,+,,, then the pair is an CY pair (cf figure 8 ( b ) ) .  
Let L be the period of G in the direction of x. We define 

p,(G) = (l /L)Card{a pairs with the first plane intersecting (0, e, ,  2e,, . . . , ( L -  l)el}}. 

p a  is a concentration of CY pairs in the ground state G. We define pp( G)  in a similar 
fashion. By CYCY we will denote three planes P, gP, g 2 P  such that {P, gP} and { g P ,  g 2 P }  
are CY pairs. Then pmm(G) is a concentration of (YCY triples. 

Let us first study the system without stabilisation. The first four terms of low 
temperature expansions for any ground state can be expressed in terms of concentra- 
tions p in the following way: 

E 1 = 8  n,(O) = 1 

E 2 =  12 n 2 ( 0 )  = 4 

E,= 16 = ? + P p (  G )  

E, = 20 n F ( 0 )  = 60 + 12pp ( G )  + 2pp ,  ( G).  

The expression for the last coefficient differs from the expression obtained by 
Mackenzie and Young [6]. Our result is in agreement with calculations by Styer [7]. 

Next we add a one-dimensional perturbation: 

L( J )  = J 1 S,Sb 
with the sum over pairs of next-nearest neighbours (cf figure 8 ( a ) ) .  It is easy to see 
that eG = 1+2pp(G).  Hence, for J < O ,  the only ground states are those for which 
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J 

Figure 9. The phase diagram for the antiferromagnet on the FCC lattice with any stabili- 
sation. 

p p  = 1, i.e. the completely symmetric ground states described before. Their class will 
be denoted by ( p ) .  

For J > 0, the concentrations for the ground states satisfy the condition p p  = 0. 
These ground states are described as follows. Starting from any ground state ( p ) ,  we 
flip spins in every other plane. This class has twelve elements and will be denoted as 
( a ) .  

5.2.1. The convex structure in low orders 

Order I :  p:p = ( - e G ,  1).  There is one face F parallel to max WO. v , ( F )  = 0. 
Order 2: p-& = ( - e G 4 ) .  Again max W2 has one face F parallel to max WO. 

Order 3: p& = ( - l , ? ) + p , ( G ) ( - 2 ,  1). Hence all functionals lie on the same line. 

Order 4: p& = (-eG 60+ 12p, +20,,). 
Let G.# (a), ( p ) .  Then p a ( G ) p i $ + p p ( G ) p ) i f l n ) >  p&. The inequality follows from 

the fact that p p (  G )  > ppp( G) if G # ( a ) ,  ( p ) .  Hence max W, has only one face p, and 
no  phases other than (a) and ( p )  belong to %,(f). 

Suppose now that we add to Ho the stabilisation H , (  m ) .  Then the forms of convex 
structures described above do  not change. We conclude that for p large enough and 
J small enough, there are only two phases: (a) for larger J and ( p )  for smaller J. 
The phase diagram in any order higher than three consists only of the curve separating 
these two phases (figure 9). 

v2( F )  = 0. 

There is one face F‘,  u3( F‘)  = $, &( F’)  = f exp( -16p). 

6. Conclusions 

An important test for the method presented in this paper is the Pirogov-Sinai case: 
the number of ground states is d + 1. Here the conclusive order is the zero order: by 
hypothesis, {eG G E %} spans T*, and therefore W = max W. Moreover, W has d + 1 
extrema1 points, so it  is a simplex. Hence the phase diagram has one point of 
( d  + 1)-phase coexistence, d + 1 lines of d-phase coexistence, ( d l l )  two-dimensional 
surfaces of d - 1-phase coexistence,. . . , ( d d ” )  regions where the unique phase exists. 
The rigorous result of [ 1,2] is reproduced, as one should expect: the asymptotic phase 
diagram is asymptotic to the rigorous one and  thus has the same topology [3]. 
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The application of the method is restricted by assumption 1 (or 2) and by the 
requirement that the number of ground states be finite. The first restruction has been 
discussed in $4.2: we d o  not know how to avoid it. In the case of an infinite number 
of ground states some further development seems to be possible, though one loses 
most of the mathematical machinery used in the proof of theorem 3 (appendix 3). 
Hence a new approach is needed, different from the one used here. 

An algorithm of the method consists of order-by-order construction, using convex 
polygons. Therefore it makes possible numerical analysis of the phase diagram. Work 
on this aspect of the problem is in progress. 
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Appendix 1. Proof of theorem 1 

Let r = I;,”=1 r,, where rJ is the upper limit of the second summation in (2.3). Define a 
function 

with U = ( uI1,  u I 2 , .  . . , u l r l , .  . . , u , , , ~ , ~ )  E R‘. 
It is easy to see that F satisfies conditions of the implicit function theorem. Hence 

there exists an open ball B(0,  q )  c R‘ in which the solution y : B(0 ,  q )  + M of the 
equation F ( y ,  U )  = 0 exists. Moreover, since F is analytic, y is analytic in U. Let a be 
a multiplicity function, a : {( j ,  I ) :  1 cj c m, 1 c IS rJ}  + N, and y a set of all multiplicity 
functions. There exists q1  > 0 such that V U E B(0,  q l )  we can write y (  U )  in the following 
way: 

(Al . ] )  

where u 0  = n ; ~ ,  U;(””. 
Consider now the subset of B(0 ,  SI): 

(‘7 1 ) { U E : ‘ J  1 = exp[ -P ( E, + FJ,l( L ,  1, E O, P E +>. 
Let Pm(%o)  be such that C ~ P ~ ( ~ ~ ) > - I ~  q l ,  with c, defining 0. For P > P ( % o ) ,  we 
define 

Y ( Z ,  P )  = y{exp[-PE, + P , , I ( Z ) l J )  z E P O n N .  

Then y ( z ,  P )  exists and is the solution of (2.9). 
The substitution U,/ = exp(-PE, + p J , , ( z ) )  in ( A l . l )  yields 

oc 

Y ( Z ,  P )  = C y , ( z )  exp(-PE,) 
\ = I  

ya exp( - ( n , k )  a ( n ,  k ) p n , k ( Z ) )  

where 

y,(z)  

and the first sum is taken over all multiplicity functions a such that a(n ,  k ) E n  = E,. 
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Appendix 2. Proof of theorem 2 

( a )  We will first prove statement 1 for the case where E = { p } .  
Let r’ = T\{p} and W’ = conv r’. Suppose that p E &(max W). Since W‘ is convex 

and closed, then there exists a hyperplane P c Rd+’ strictly separating p from W‘. 
Hence there exist x,o Rd, yo, (Y E R  such that P = {( 7, t )  E R d t l :  (xo, 7)+ yot = a}. Note 
that p ( x o ) > a  while p ’ ( x , ) < a  for all  ET'. Hence 3 ~ > 0 :  ) ( x - x , I I < ~ + x ~ n ( p ) .  
Thus dim n ( p )  = d. 

Next, let 

T o =  U F 

Claim. tlb E To, Vx E no(p), p ( x )  > p’(x). 

Proof: Let b = (6, L?). Consider p, = ( A i +  (1 - A ) h ,  U,), A E (0, l), where a, is such that 
(6, a,) E max W Then there exists F and A‘E ( 0 , l )  such that p, p, E E Obviously 
a, >A’i+( l -A‘)u ,  since F E  F. But then V x ~ n ~ ( p )  

p(x)  > p, (x )  = A‘(x, 6) + (1 - A ‘)(x, h )  + a, > A‘fi(x) + (1 - A’)p(x) i.e. p(x )  > ;(x). 

nob) = {x:  A x )  > PYX), P ’ E  To, P ’  # P I .  
P E  F 

Finally, note that if bEUpEF&(F) and p’=X.S=l A,p,, then the condition 
p(x)  > p , ( x )  for all i = 1, . . . , s induces the condition p(x)  > p’(x) (see the proof of 
part ( b ) ) .  This proves (3.3). 

PO, PI, . . . 9 Pd - r  E E (  E )  
Then n ( E )  c N + x,, where xo is any solution of the system of equations 

Now consider the general case: E has dimension d - r, r < d. Let 

and N = n;:; ker(h, - ho). 

(x, h, - h,) = a, - a, i = 1, . . . , d - r. 

We can choose xo uniquely by demanding that it is orthogonal to N. Consider the map 
P r E  : ~ d + l + ( ~ d - r t l .  . p r , ( p )  _= p’ = (6, a + h(x,)) 

where 6 is the restriction of h to N. Obviously, for any p in E, p’= bo. 
Let @ = prEW. We will denote a phase diagram for a set f = p r , r  by fi, and its 

strata by fIJr). It is not hard to see that p ’ , ~ ~ ( m a x  W). Now we apply the case 
E ={p}to W. S i n c e n ( E ) c  N+x,,thebounds(3.3) onfI(p’,)givetheboundsonn(E).  

( b )  Let p =If=] A p , .  Define 

N = { x :  p, (x)= p J ( x ) , i = l ,  . . . ,  s}.  

Vx E N,  P(X) = & ( X I  for all i 

Vx G N 3 i :  p(x )  < pl(x). 

Then 

Hence, W P )  = W { p , ,  . . . , P S I ) .  

(c) pEmax W J 3 ( h ,  t)Emax W: ( h ,  t ) > p .  Hence V X E R ~ + ’ ,  

(x, h)+  t >  p(x) .  

Let ( h ,  t )  = AA. It is easy to see that Vx3p,: p(x)  < pl(x). Thus n ( p )  = 0. 
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Appendix 3. Proof of theorem 3 

Now we present the proof of theorem 3. Proofs of lemmas cited in this section can 
be found in [8]. 

The general strategy of the proof is based on the following observation. Suppose 
that 97 is a subset of ie and let U be an open set contained in UGsv. fl,,,@(G). Define 

as a phase diagram for phases in 9' (i.e. with other phases neglected). Then 

n U = fl,,p n U. 

We will first find the covering of PO with the camily of sets such that in each of 
defined for some subset 9' of 

Let { F o , .  . . , F,} be a sequence of faces as in (iii) of Q 4.1. With every element of 

these sets 
9. 

this sequence we associate a set 

is described by the phase diagram 

u k ( F k )  = B[fik(Fk, p),ck(Fk) exp(-PEk+,)I (open ball). 

Constants c k (  F k )  will be specified later in this section. Slightly abusing this notation, 
we set Uo(Fo)=pO.  We will define u k ( F k )  in four steps, using an induction in the 
order k. 

Suppose that Uk-I(Fk-l) is defined. Then we show that: 
(i) in Uk-l(Fk-l), the function 7rz is approximated by P&(Fk-l), so that their 

(ii) in Uk-l(Fk-l), the phase diagramisgiven by phases in iek-I(Fk-1) (i.e. neglecting 

(iii) if p&(Fk_,)Eint Fk for some F k  E I F ~ ( F ~ - , ) ,  then n,,,(G) is contained in a 

(iv) in step (iv) we define uk(Fk), FkE5k(Fk- l ) .  

difference is of order exp(-PEk); 

other phases); 

ball with radius r = O(exp(-PEk+l)); 

(i)  Lemma A3.1. Let F E  IF, and {Fo, F,,  . . . , F }  be the family of faces correspond- 
i n g t o F ( c f ( i i i ) o f O 4 . 1 ) .  F o r O s k s m a n d c > O , w e d e f i n e  

B(Fk, c )={x :  lIx-ck(Fkr p)li scexp(-PEk)). 
Then ga,,,>O:VG€ %,(F)gdk(G)>O:bP>O, VXEB(Fk, C) :  

IPz,p(F,  x)-rz(-% P ) I s  dk(G) exp[-P(Ek+am)l. (A3.1) 

In zero order the estimate is not as good, since we demand that (A3.1) holds on Pb. 
Hence 

IIX I1 s Pc. 

l P z , p ( E  x)  - 7rz(x, P)l s P$(G) exp(-Pao). 

Then 

The next lemma is an immediate consequence of lemma A3.1. 

Lemma A3.2. Let Yo= {Go, G,, . . . , G,}c %,,,(I=) be such that {eG,, i = 1, .  . . , s} is 
linearly independent. Consider the solutions y ( z ,  P ) ( P  > P m (  go)) of the system of 
equations (2.9) (cf theorem 1) and yo(z, P )  of the system 

(A3.2) P g p ( F ,  Y ,  2 )  = P%p(F ,  Y ,  z )  i = 1, . . . , s. 
Here z En:=, ker(eGL - eGo). 
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Let B(Fk, c )  be in lemma A3.1. Then V k  S m, Vc> 0, 3ak(c)  such that if p > &( %,) 

(A3.3) 

Lemma A3.2 states that inside B(Fk, c), the solutions of (2.9) and (A3.2) are close to 
one another; their distance is of order exp(-/3Ek+l). 

and (yo, z) E B(Fk, c), then 

Ily(z, p ) - Y O ( z ,  p)ll <ak(C) exp(-PEk+l). 

(ii) Lemma A3.3. Let F E F k .  Then 3c>O, 3y(c)>O, 3pk(F) :Vp>pk(F) ,  

(A3.4) 

for some G E %k(Fk). Hence Uk(Fk) c U a,,,,( G )  with the union over elements of 

(iii) Lemma A3.4. Let FEF,(F‘) and G be such that p:,.,(F’)Eint F. Then 

V G a  ? ? k ( F ) ,  VxE B[&(Fk, p ) ,  c eXp(-PEk)]: 

P & ( E  X)-P!$(F, X I >  Y ( C )  exp(-PE,) 

g k  ( Fk). 

V s z m 3 P s ( G ) :  V p > p s ( G ) , 3 r , > 0 :  

a , p ( G )  c B [ c m ( F ,  P ) ,  rs ex~(-PEm+I)l .  (A3.5) 

(iv) The definition of sets U,(&). Suppose that Fk E F ~ .  Define rk(Fk) to be the 
smallest number such that U;(&) = B[& ( F k ,  p ) ,  T k ( F k )  exp(-pEkt1)] contains sets 
described below. 

(l)am,p(G) if P:@(Fk-I)Eint Fk. 
(2) If F has more than d + 1  extremal points, let us consider any d-element 

collection of pairs {(GI,[, G2,1) ,  i = 1 ,  . . . , d}, where any phase corresponds to an 
extremal point of F, and some elements in different pairs may be the same. For any 
pair (GI,,, G2,,), let NI be the solution set for the equation 

G I  
Pzgl(Fk-l, x )  = Pk,; (Fk-l ,  

Define 

SI = {x: dist(x, N , )  S a, exp(-PEkt,)} 

where a, is given by lemma A3.2 applied to the set {GI,, ,  G2,[}. It is easy to see that 
for any such d-element collection of pairs, n7f=, S, is contained in a ball with radius 
r = O(exp(-PEk+,)). We require rk(Fk) to be such that for any collection of pairs as 
described above n:=, S, = U;(&). If Fk contains exactly d + 1 functionals P?tl(Fk-l), 
then we set = 0. 

Example. The construction of the set Uo(Fo) for our example is shown in figure 10. 
We choose the collection of pairs { ( - 5 ) ,  (3)}, {(-3), (3)). The thin full lines represent 
sets N(( -5 ) ,  ( -3 ) )  and N((3 ) ,  (-3)) .  The dotted lines show regions restricted by 
lemma A3.2. The dotted region is S (  ( - 5 ) ,  (-3)) n S (  (3), ( - 3 ) ) .  

Now let y > 0 be any fixed number. We define ck(Fk) = rk(Fk) + y. In the applica- 
tions y will be chosen in such a way that its value comprises a small fraction of any 

Let p L I ( y )  be such that if /3 > P L I ( y ) ,  then the following conditions hold for all 
r k ( F k ) ,  k s  m. 

k s  m :  

(i)  ( Fk ) 1 ( Fk - 1 ) 

(ii) U,(&) c B(Fk, c )  (with c defined by lemma A3.3) (A3.6) 

(iii) V F ,  F ‘ E  Fk(Fk-I), Uk(F) n Uk(F’) =0. 
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Figure 10. The construction of the set Cr,(F,) (broken circle). The thin full lines are 
N ( ( - 3 ) ,  ( - 5 ) )  and N ( ( - 3 ) ,  (3)) .  The dotted lines represent sets S ( ( - 3 ) ,  ( - 5 ) )  and S ( ( - 3 ) ,  
( 3 ) ) .  

If P > P u ( y ) ,  we can define a covering of PO by a family of sets: 

{Uk(Fk),FkEEk, k = O  ,..., m } .  

Next, let us consider a covering of U,(&)  by the family of sets defined in the 

(i) \%‘I = d + 1; 
(ii) all elements of 3’ correspond to extrema1 points of Fk; 
(iii) o’(Fk, %’) = int[ &1(&1) nuGEgs H(F,  G ) ]  is connected. 
For any normal subfamily of %k(Fk), we define 

following way. Let %‘c %k(Fk). We say that %‘ is normal if 

o(Fk, %’) = A {X E 0’: dist(x, n(Fk, G ‘ ) )  ak( G’) eXp(-PEk+,)}\U;(Fk). 

The intersection here is over all G’E 9‘ which have common boundaries with some 
GE %’, and a k ( G ’ )  is given by lemma A3.2 for the family go= {G, G‘}.  

{0( F, %‘), FE ff k ,  9’ normal subset of %k( F ) ,  k = 0, . . . , m }  

Obviously the family of sets 

covers Pd (since m is the conclusive order). 
Example. In our example the covering is as follows. Only Uo(Fo) and U,(F) are 
non-empty. The normal subfamilies of ’3 are: { ( 5 ) ,  (3), (-3)}, {(3), (-5), (-3)}, 
{ ( - 5 ) ,  (-31, ( 5 ) } ,  { ( - 5 ) ,  (31, ( 5 ) ) .  The set O(Fo, ((51, (31, (-3))) is dotted in figure l l (a ) .  

Note that g1(H), %,(G), g1(H‘) and ge,(G’) are normal. 
The normal subfamilies of % , ( F )  are {(-l), (3), (l)}, {(3), (l), (-3)}, 

The set O ( F ;  {(-l), (31, (1))) is dotted in figure l l ( b ) .  
Finally both 97(F1) and g7(F2) are normal. 
In the presence of symmetries we modify the definition of sets O(F(e’) as follows: 

O( F, 9‘) = 0’( F, %‘)\A‘ 

{(1), (-3h (-1)) and {(-3), (-11, (1)). 
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Figure 11. The elements of covering of PO: ( a )  O(F,, { ( 5 ) ,  (3), (-3)}); 
( b )  O(F, { ( - l ) ,  (3), ( l )}) .  The broken lines separate domains for different phases. The 
dotted lines show restrictions imposed by theorem 3, part (1  b). 

where 
A'={xEO'(F, 3'): dist(x,II(Fk, G')<ak(G,  G')  

x exp( -PEk+,) unless G '  = 8G, 8 E @( F ) } .  

Here ak(G, G') is given by lemma A3.2. 

A3.1. The proof of theorem 3 

(1) Suppose that F E F k ( k s  m ) .  Let Z =  U ; ( F ) \ u  &+l(F') ,  with the union over 
faces in Fk+l(F). The family of sets { o ( &  %'), 3' normal in %k(Fk)} covers 2. 

Claim. n O( F, 9') is diffeomorphic to n( F )  n O( F, 9') 

Pro05 Suppose that the elements of 9' are ordered: 

%'={Go, GI, .  . . , Gd}. 

We define the map 

T , ( P ) : T + R ~ " / A :  r F ( p ,  x) ,  = [ T S ( x ,  p ) ]  i =  1,. . . , d. 

Here A is a diagonal: A = { y  E Rd+ ' :  y ,  = y ,  = . . . = y d } .  There exists Pu, such that if 
P > Pus, then r F ( P )  is a local diffeomorphism on PO. In addition, we have a map 

P F ( P )  : T e R d + ' / A :  PF(PI  x)! =[P&(Fk-I, 

This map is also a diffeomorphism. By the definition of O( F, g'), the claim follows. 

Hence, inside O( F, 9') there is an obvious correspondence between strata of n( F )  
and strata of am,@. This correspondence obviously extends to the whole set 2. 

The bound on the distance of corresponding strata can be easily established by 
applying lemma A3.2 to any 9o for which Clm.B(90) is non-empty. Here a ( & )  is a 
maximum over ak( g o )  for all such %o(ak( 90)) is provided by lemma (A3.2). 
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(2) First note that due to assumption 1, if E is an r-dimensional face of 
max W k + l ( F k ) ( r < d ) ,  then for any s 2  k + l ,  E is an r-dimensional face of 
max W S + ] ( F s ) .  The same holds for a d-dimensional face F if F contains only d + l  
functionals p p .  Let k be the lowest order in which E is an extremal element of 
max Wk(Fk-1). By theoFem 3, there exists a stratum II(F,-,, %,(E))  of n(Fk-1)  which 
corresponds to E. By part (1) of the proof, there is a stratum a , , , $ ( % k ( E ) )  which 
corresponds to II(F,-,, g k ( E ) ) .  

If E contains more than d + 1  affine functionals, then in general there is no 
correspondence. However, in higher orders E is replaced by max W,+,(E) ,  and we 
apply part 1 of the theorem to the set U;(,??). 

With the change of order m we have to redefine sets V,(F,) and sets o ( F k ,  9') 
since there will be a change in estimation (A3.3). By lowering temperature we can 
compensate for these changes, so the above considerations hold for a construction of 
R , ,  with s 3 m. 

The value of Pm is determined as the maximum of the following: 
(i)  P U ( y )  given as the condition that the sets U,(&) do not intersect (cf (A3.6)); 
( i i )  p9. for all FE  IF ,, k = 0, . . . , m (the existence of local diffeomorphism as given 

in the claim in part (1) of the proof); 
(iii) p m ( {  G, G'}) (as in theorem 1 )  for all pairs of phases, corresponding to extremal 

points which share a one-dimensional extremal edge. The condition p > pm < { G, G'}) 
assures the existence of the stratum R,,,,( G, G'). 

Obviously Pm is finite. 
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